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ABSTRACT

The development of fundamental approaches for predicting failure and elongation

characteristics of fibrous composites are summarized in this document. The research

described includes a statistical formulation for individual fiber breakage and

fragmentation and clustered fiber breakage, termed maerodefects wherein the aligned

composite may represent a structural component such as a reinforcing bar element, a

rebar. Experimental work conducted in support of the future exploitation of aligned

composite rebar elements is also described. This work discusses the experimental

challenges associated with rebar tensile test evaluation and describes initial numerical

analyses performed in support of the experimental program.
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1.0 INTRODUCTION

Previous research that established a fimdamental foundation for developing

models and methods for predicting the s_ength and elongation of fibrous composites

was presented by Palmer (1981). This work was further developed in the Phase 2

effort described herein. A primary objective of this collective effort has been to

develop models that may be used to predict the strength and elongation of fibrous

composite systems from a knowledge of the basic properties of the constituent fiber and

matrix materials. It is now widely recognized that the sequential breakdown of the

fiber and matrix constituents and the associated interface precludes the reliable

application of the well known mixture rule for stress in a composite material, i.e.,

-- f sf + (1 - f) Sm (1.1)

It is also known that some form of statistical foundation, typified by some form of

Weibull theory, can be valuable in obtaining predictions and insight into the subtle

manner in which fibrous composites accumulate progressive damage under uniaxial

loadm___g. In this work, we extend the treatment to flexural loading considered to

represent failures that might result from local bending of rebar elements following

complete breakdown and loss of support fi'om a surrounding concrete material. The

treatment is intended to address the concern over catastrophic failure that could result



from the abruptfailureof rebarsinreinforcedconcretewaterfrontstructuresfollowing

earthquake,extensivewave activityor blastloading.

The current range of high performance composites used extensively in

aerospace structural components are known to have ultimate strains-to-failure in the 1

to 2% range and typical allowable tensile strains of less that 0.5%. In civil engineering

applications, such a low strain capability could be a major impedinmm, particularly in

view of the desire to avert catastrophic failures and consequent separation of structural

components. Thus, the thrust of the current research is to provide models and methods

that will aid in evalua_on of the potential structural merits of the wide range of

composite systems and constituent fibers and matrices.

To complement the above theoretical studies, a parallel experimemal effort

executed in close collaboration with the Naval Facilities Engineering Service Center

(NFESC), Port Hueneme, has provided data on reinforcing bars and prestressing

strands for reinforced and prestressed concrete strucun_. These bars and strands were

supplied to the University of California at Santa Barbara (UCSB) by NFESC as were

the generous use of _'s experimental facilities. As part of the experimental

studies, detailed numerical (finite element) analyses were also conducted on gripping

methods and end anchorages, h is a frequent experience in such investigations for

induced stress concenU_ons in the vicinity of the grips to precipitate premature

failures,therebylimitingthe extentof representativedam collected.This was the case

again experienced,although considerableprogress was made in developing and

understanding the mechanisms responsiblefor p_ grip failureand resulting
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modifications in grip/attachment design. Of course, the high degree of anisotropy

inherent in most polymer matrix composites (PMC) contribute a greater level of

complexity, and a resulting need for a more thorough fuadamental background, that

motivates such studies.



2.0 EXPERIMENTAL PROGRAMON STRENGTH

This sectiondescribesthe experimentalprogramconductedto determine the

applicability of various materials for use as replacements for standard steel rebar in

naval ocean, waterfront and facility structures. Current materials, while adequate in

the initial design and construction phases of operation, have an inherent life limitation

brought about by both fatigueof the structureand corrosionof the materialdue to an

adverseenvironment, inthiscase saltwaterexposure. The use of compositesoffersa

potentiallyviablesolutionto these problems. The fatiguelifeof some composite

systems can be considerablyhigher,and compositescan be constructedto be resistant

to the rigorsof a marine environment. This study looks at both metal matrix

composites (MMC) and polymer matrix composites (PMC) as improvements to the

currentsteelstandard.This approach affectsa sound fundamentalunderstandingof the

micro-mechanicalmechanisms inherentin thesesystems. The comparison of the basic

differencesbetween such rigidand flexiblematrix materialscan provide valuable

insightintodesigningcomposite structures.The researchalsofocuseson the failure

modes of thesematerials.Current steelrebarfailsin a ductilefashion. The bar will

stretchwith increasedloadcausinga visiblecrack intheencasingconcrete.This crack

allows warning and repair before catastrophic failure of the structure occurs. Unlike

steel, some contemporary composites tend to fail in a catastrophic manner. This

research attempts to balance the inherent benefits of fatigue life and environmental



resistance and the constraints of catastrophic failure inherent in composite materials to

create an alternative to steel rebar that potentially offers a lower lifetime cost.

2.1 Ultimate Strength and Elongation of MMC Systems

The first section of the study examines the use MMC's with a focus on creating

a model to predict the ultimate strength of the material. The material used in this study

was a unidirectional [0°]4 titanium matrix composite, SCS6/Ti 15-3 made by Textron.

It consisted of 38% SiC fibers in a matrix composed of a metastable [3-Ti alloy.

Because of the still limited availability of titanium MMC's, three specimens of each

type were used to determine the mean strength for each configuration. Various tests

were completed to characterize the material and examine the volume dependence of the

strength of the material. Tension, three-point and four-point bending tests were

conducted to determine the ultimate strength of the material under various loading

conditions. Other experiments included, examining the in situ fiber characteristics to

determine the differences between pristine fibers and extracted fibers, and a series of

notch tests to cletermine the notch sensitivity and other fracture parameters.

Specimens with a reduced gauge section were used to determine the tensile

strength. Two specimens with gauge lengths of 10 mm and 200 mm and a transition

radius of 2 inches were used to determine the volume dependence of the tensile strength

as shown in Figure 2.1. This radius has been shown to be sufficient to cause failures,

predominantly in the gauge section, for this type of composite [Jansson et al, 1991].
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The specimens were loaded in a servo-hydraulic test system using wedge grips and the

strain was measured with an extensometer having a 6-ram gauge length. The tensile

response exhibited an initial linear response with a slight decrease in slope after mau'ix

yield. The final failure was catastrophic and the long Specimens had sufficient stored

energy to cause secondary bending failures after the initial tensile failure, as shown in

Figure 2.2. The test results indicated a slight variation in strength for each specimen

length and the average strength for the long specimens was slightly lower than that of

the short specimens [Bish, Jansson, Kedward, 1996].

Three- and four-point bending tests were performed using standard fixtures

illustrated in Figures 2.3 and 2.4, respectively.

were used for the three point bending tests.

conducted with a center span length of 20 ram.

Span lengths of 20 mm and 90 mm

The four-point bending tests were

The bending tests were performed in

an electro-mechanical screw-driven system and the reported displacement is the ram

displacemem [Bish, Jansson, Kedward, 1996].

Four-point bending tests were performed on specimens with a rectangular cross

section. The bending response exhibited some initial slack and was linear thereafter up

to the final catastrophic failure. The failure was initiated on the tensile side of the

beam. In some cases, the crack arrested and the displacement had to be increased at a

lower loading level than for the initial failure to cause the final separation, as shown in

Figure 2.5. The nominal bending strength was higher than the tensile strength of the

composite while the specimen-to-specimen variation was of the same magnitude [Bish,

Jansson, Kedward, 1996].
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Three-point bending tests were performed on rectangular beams with two

different lengths. The response of the long beams were linear up to a catastrophic

failure with a load drop to zero load. The long beams were more flexible and had

sufficient stored energy to drive the fracture to a full separation as shown in Figure

2.6. The response for the short beams was more stable and the initial failure was

followed by controlled separation under decreasing load after the initial load drop, as

seen in Figure 2.7. The strength in shorter three-point bending specimens was higher

than for longer three-poim bending specimens. The strength in the three-point bending

tests was also higher than in four-point bending tests. The sample-to-sample variation

was of the same order as in the previous tests [Bish, Jansson, Kedward, 1996].

To assess the flaw sensitivity of the material, tests using double-edged notched

specimens were performed. The notches were cut by using a diamond blade saw with a

thickness of 0.2 mm. The specimen width was 8 mm and the ratio of notch length to

specimen width was 0.15, as illustrated in Figure 2.8. The results show that the

nominal stress, in the ligament between the two notches, was slightly lower than the

tensile strength of the short specimens. This indicates a notch weakening. The

fracture toughness was approximately KI -- 55 MPax/m [Bish, Jansson, Kedward,

1996]. This result compares favorably with the simple model by Kelly and Tyson

[1965] in which it is assumed that the toughness is given by the plastic dissipation in

the matrix. This model predicts a toughness of 50 MPa_/m. Another series of notch

tests were completed using various crack length to specimen width ratios. The results
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of this series of tests will eventually be used in the creation of a predictive model

examining the effects of notches on the ultimate strength of this material.

The final test series performed on the MMC's was to determine the fiber

properties in the manufactured material. The fiber modulus for the SCS6 fibers has

been reported to be in the range of 360 to 400 GPa. The fiber strength is length

dependent and is usually given in terms of a mean strength and a Weibuli modulus. A

mean strength of 4.3 GPa and a Weibull modulus of 9.3 has been reported for pristine

fiber with a length of 50 nun [Bain et. al, 1985]. To determine the in situ fiber strength

for the present composite, 100 fibers were extracted from the composite by etching the

matrix away using a 49 percent HF solution. A few initially broken fibers were found

in the composite. The average strength for the extracted fibers was 3.65 GPa and the

Weibull modulus was 4.9, as shown in Figure 2.9, [Bish, Jansson, Kedward, 1996].

This indicates that a substantial degradation occurs during the fabrication of the

composite.

2.2 Ultimate Strength and Elongation of PMC Systems

The second section of this study focuses on PMCs. The experimental research

in this section deals with creating an effective grip, so that the strength of composite

bars can be accurately determined. Traditional gripping mechanisms have proven

unsatisfactory in determining the tensile strength of composite rebars due to the

induced stress concentrations near the end of the grips which initiate a premature

8
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failure. In this project, two types of clamping mechanisms were examined

experimentally in order to solve this problem. The first method is the clamp, in which

the rebar is held between four blocks fastened together by bolts. The second method is

the end wrap in which the rebar is wrapped with another material, usually with a

higher strain to failure than the rebar that is used to protect the test specimen.

The use of clamp grips and end wraps was examined as a means of alleviating

the increasing strain in the rebar adjacent to the bar/grip interface and the stress

concentration near the end of the clamp grips. The strain in the bar increased with

increasing radius with the maximum strain at the outer radius of the bar, but the strain

profile smoothed out as the distance from the grip end increased [Malvar, Bish, 1995].

These problems occurred in the clamp grip, four aluminum blocks bolted together with

a specified level of lateral pressure, and in standard grips, ASTM tab adapters, even

though an increase in strength was noted with the use of the clamp grips. The

predominant failure mode in the clamp grips was still caused by the high strain level at

the rebar/grip interface. By wrapping the bars with a material capable of handling high

elongations, this problem can be alleviated. Wrapping the bars with more layers of E-

glass was insufficient because, although the high strain levels had been removed from

the rebar, the strain level was still present in the wrap which fails causing failure of the

bar. Addition of a different material that can withstand higher strain levels should

solve this problem, provided the material is capable of high enough elongation. The

effects on the strain distribution caused by the addition of both stiff and flexible wraps

is illustrated by the f'mite element results presented in Figure 2. I0. In this figure, the

9
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axial strain is plotted against the distance from the bar center for the first five (1-5)

layers of elements below the grips.

The majority of the current work on these types of gripping mechanisms

focuses on small diameter rods from 3.2 mm [Holte, Dolan and Schmidt, 1993] to 8

mm [Sippel, 1992], and [Iyer, Anigol, 1991]. This diameter is considerably smaller

than the 19 nun (.75 in) standard rebar examined in this study. The increase in size

causes premature rupture in the outer layers of the specimens creating an apparent size

effect due to the increased shear lag in the larger specimens.

Different kinds of PMC rebar were examined in the course of this study. A

hybrid, carbon/E-glass bar, and two kinds of E-glass bars which from previous work

have been shown to be well behaved. The hybrid bars consisted of an E-glass core

surrounded by an outer layer of carbon and E-glass at an angle. The hybrid bars were

tested using various end wraps, a carbon acrylic composite, soft copper tubing,

fiberglass, and various epoxies in an attempt to add more compliance to the system by

increasing the elongation near the bar/grip bar interface. The tests were showing

sporadic results, not due to the methods, but because of the bars. Close examination of

the bars, especially the failed specimens, showed extensive manufacturing variability in

the rebar. These imperfections included distortion of the rebar and inconsistent

thickness of the outer wrapping. These flaws caused premature failure of the bars.

The distorted rebar created significant bending effects in the tensile tests. Although

this effect is small, when combined with other flaws, the distortion of the rebar could

10



cause premature failure. The inconsistent outer wrap initiated failure due to the already

high strain levels at this critical location.

Of the two kinds of E-glass bars tested, both were at least 45 % fiber volume in

a polyester or vinylester matrix. The difference in the bars was primarily in their outer

surfaces; one had an outer layer of matrix material for protection while the other had a

sanded exterior with protruding deformations. The exterior one-eight-inch outer

coatings on the rebar are used to increase fiber protection and, in the case of the

protruding deformations, improve the pullout characteristics from concrete. These bars

underwent three test series. In these tests, the specimens had a diameter of

approximately 0.75 inches and were 42 inches long with a large clear spacing between

grips where two linear voltage displacement transducer(LVDT) with a gauge length of

12 inches were attached. The first series of tests served as a baseline. These tests

followed ASTM D3916. The next series of tests used a clamp grip tightened directly

onto the rebar. The final test used a clamp grip and the rebar was further protected by

a wrapping the ends with additional composite material. A substantial increase in the

measured strength was found by using both the clamp and the end wrap. In this

configuration, unlike the others, the failure was outside the grip, along the entire rebar,

and the measured strength was expected to be the highest attainable for these bars, as

reported in Table 2.1 [Malvar, Bish, 1995].

11



Table2.1. Effectof GripType on Measured Mechanical Properties

Bar

Type

Grip Tests Modulus of

Type Elasticity

GPa (ksi)

A ASTM 5

D3916

A Clamp 3

A Clamp 4
+

Wrap 1

A Clamp 4
+

Wrap 2

C ASTM 5

D3916

C Clamp 3

C Clamp 3
+

Wrap 2

46.5 (6740) + 1.3 %

49.3 (7155) + 9.0%

47.8 (6930) ± 6.6%

47.4 (6880) + 2.4%

50.4 (7315) :t: 3.0%

Ultimate Stress

MPa (ksi)

598 (86.7) ±

2.2%

617 (89.5) ±

2.7%

680 (98.6)±

6.7%

648 (93.9) ±

3.2%

561 (81.4) +
5.1%

710 (103.0) ±
5.1%

Ultimate

Strain

0.0141 ± 3.4%

0.0153 + 4.0%

0.0157 ± 9.1%

0.0123 + 6.5%

768 (111.3) +
5.1%

0.0186 ±

21.2%

An extensive investigation on how resin properties affect impact strength was

reported by Palmer [1981]. The same fiber, Thornel 300, together with 23 different

resins, was used in the investigation. Longitudinal tensile strengths and strains to

12



failure aregiven for thedifferentunidirectionalsystemsin the report. It wasshown

that the composite strength increases with resin modulus. A closer examination shows

that the increase is greater than what can be expected from the rule of mixtures and the

strengthening must be caused by an interaction between fitmr and matrix. The data have

been used to plot the composite strength versus resin strain to failure in Figure 2.11

and composite strain to failure versus resin strain to failure in Figure 2.12. These two

graphs show that the composite strength and strain to failure increases with matrix

strain to failure. It can be expected that a matrix with a higher strain to failure has a

higher toughness than a matrix with a lower strain to failure. Sufficient data for

strength modeling with the clustering models as given in Section 3 are not available.

However, the models predict that the critical defect size increases with matrix

toughness and this would cause an increase in composite strength as seen in this study.

13
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3.0 THEORETICAL DEVELOPMENT OF STRENGTH AND DUCTILITY

This section describes analytical models that have been developed to assess the

strength and ductility of unidirectional composites. Many large components made of

composite materials do not exhibit the strength expected of specimen data that is

especially critical for large civil structures. This can be attributed to a volume

dependence of the composite material's strength, introduction of unknown defects

during the manufacturing of larger complex components, unexpected residual stresses,

or stress concentrations. A volume dependence of the tensile strength has been

observed for PMCs. Bullock [1974] found that this variation could be represented by a

two-parameter distribution (Weibull [1939]). Later, it was observed by Whitney and

Knight [1980], who had access to more experimental data, that the two-parameter

distribution was not sufficient to model the strength. For a brittle-brittle composite

system, Jansson and Leckie [1992] observed a substantial difference between the tensile

and bending strengths for different flexurai modes. This large difference in strength

was attributed to the formation of a macroscopic defect requiring a number of clustered

fiber breaks.

The fiber strength is frequently represented by a two-parameter Weibull

distribution that is based on the weakest link assumption. Unidirectional fiber-

reinforced composites usually exhibit a lower volume dependence in strength than the

individual fibers. In this type of composite, the fibers are parallel and the weakest link

14



conceptfor the individualfibers is not likely to apply because a break in an individual

fiber causes a stress redistribution and the load is carried by the remaining unbroken

fibers. This feature was addressed in the analysis of a dry fiber bundle by Daniels

[1945]. For a large bundle, many fibers are engaged inthe failure and the strength is

deterministic with an effective bundle length that is equal to the length of the

composite. The concept of a fiber bundle was later modified to include the contribution

to the load-carrying capacity from sliding between matrix and broken fibers, cf., Sutcu

[1989], Thouless and Evans [1988] and Curtin [19931. The load transfer to the

surrounding matrix causes the effective fiber bundle length to be shorter than the gauge

length and has been related to the stress recovery length of a broken fiber, cf., Phoenix

[19931, Curtin [19931 and Jansson and Kedward [1996]. This type of failure, where

the load carried by a broken fiber is redistributed equally between the still-intact fibers,

is commonly denoted as global load sharing.

Another extreme of behavior was suggested by Zweben and Rosen [1970]. In

their model, it is assumed that a critical defect is formed when a secondary break

adjacent to a previously broken fiber occurs and the load-carrying capacity of the

composite is lost. This leads to a Weibull modulus for the composite that is

approximately twice the value of the fiber modulus. This type of failure is denoted as

local load sharing.

Coleman [1958] showed that a fiber bundle with a finite number of fibers has a

variability in strength. This variability decreases as the number of fibers in the bundle

increases. This variation in the strength of finite fiber bundles was used by Gticer and

15



Gurland[1962]. They assumed that the composite consists of layers in series and each

layer consists of a number of fiber bundles. A layer loses its load-carrying capacity

when one bundle in the layer breaks and a weakest-link system is formed in the layers

of the composite material. These models have been refined and references are given in

Phoenix [1993]. The actual size of the fiber bundle is frequently determined by fitting

the model to composite strenth data. This implies that such models cannot be used to

study how the matrix and interface influences the composite strength.

In this section, a simple model tbr a composite that exhibits perfect fiber

fragmentation is presented. It is shown that the strength and ductility predictions for

this model compare favorably to other expressions available in the literature, such as

when compared to a detailed numerical analysis of the same problem by Neumeister

[1993]. This type of fragmentation model gives an indication of the achievable strength

and ductility for a composite. However, many composites fail before the fragmentation

strength is reached. This is caused by the clustering of fiber breaks into a large defect

that triggers a global failure. The fragmentation model is used together with a statistical

model for the clustering of fiber breaks to determine the strength for different

composite systems. Some new aspects of the local load-sharing model are also

discussed in relation to clustering of fiber breaks.

16



3.1 Model for Fiber Fragmentation

Consider the unidirectional composite that is depicted in Figure 3.1. Following

Jansson and Kedward [1996],a the average stress in the longitudinal direction is given

as

_, = fox( +(1 - f)_' (3.1)

where f is the fiber volume fraction and the average stresses for the two phases are

given by

i = _ dv (3.2)
Yct _;_

where vet is the volume of each phase. Assume that the composite is subjected to a

strain field with an average strain _t in the longitudinal direction. Furthermore, the

strain field is such that no average transverse stresses develop. For a composite with a

brittle matrix, cracking occurs transverse to the fiber direction before the ultimate

strength is reached, causing _' = 0 at failure. In the case of a PMC, the matrix

contribution to the longitudinal stress could be considered to be insignificant because of

the relatively low stiffness of the matrix. For an MMC with a ductile matrix, the

matrix can carry a significant load and the phase average can, to a good approximation,

be assumed to be given by the uniaxial stress-strain relation for the matrix as

17
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Figure 3.1. Example of an unidirectional composite.
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a_-" = a'(g, ) (3.3)

The strength of brittle fibers is often expressed in statistical terms. For a simple

two-parameter Weibull distribution [Weibull, 1939], the survival probability for a

single fiber of length I is given as

(3.4)

where o / is the stress in the fiber, 10, o0 and m are constants governing the strength

distribution of the fiber. A high value of the Weibull modulus, m, indicates a low

variability in strength. If a single fiber could be subjected to a stress o f throughout the

whole length, then the number of breaks in the fiber would be

(3.5)

For a fragmented fiber in a composite with a surrounding matrix, stress

recovery occurs at the fiber breaks and the stress gradually builds away from the break

to the far field value. This causes the number of actual breaks for a fiber in a composite

to be lower than what is given by Equation 3.5. Assuming that the breaks are well

separated and that the linear stress recovery model by Kelly and Tyson [1965] applies,

18



the stressdistributiongiven in Figure 3.2 would be present in a fiber. The recovery

length is given as

dcr f
1R= _ (3.6)

where x, is a constant sliding resistance at the fiber matrix interface and d is the fiber

diameter. In reality, the stress recovery is quite complex with a sliding zone and an

elastic recovery region. Experimental data are frequently evaluated in terms of this

simple model and the reported sliding resistance only represents an average value in a

simplified model of stress recovery. Differentiation of Equation 3.5 with respect to

stress gives

dn= lm(c_ f )'-_ da / (3.7)
10(<_0)"

For the fiber stress distribution given in Figure 3.2, new breaks can only occur in the

regions of the fibers that can be subjected to a stress increase, which are given by

portions of the fiber that have a constant stress distribution. Hence, the effective length

in which new fiber breaks can occur is

t = L - 2ntR (3.8)
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where L is the total fiber length in the composite. Use of this relation in Equation 3.7

gives

dn = ( L - 2hi R)m(o f )_'-' do / (3.9)
10(o0)"

This equation can be integrated and expressed in an integral form when 1R depends on

stress. However, for simplicity, assume that 1R is independent of stress during the

integration. This assumption gives

n L o ! ' (3.10)

where

(3.11)

The average stress in the fiber phase of the composite can be determined from

the fiber stress distribution given in Figure 3.2. Applying Equation 3.2 and integrating

over the total length L of all the fibers gives
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I!o " , [ (3.12)

Using Equations 3. I0 and 3.6 in 3.12 gives finally

(3.13)

where

o / = Ej[ (3.14)

This equation constitutes an uniaxial stress-strain relation for the fiber portion of the

composite, while the full stress-strain relation for the composite is given by Equation

3. I. The stress-strain relation given by Equation 3.13 is shown in normalized form in

Figure 3.3 for m equal to 8. It can be deduced that first the stress increases

monotonically with strain until a local load maximum is reached. Thereafter, the stress

decreases and f'mafly begins to slowly increase again with strain. The model's accuracy

is diminished after the load maximum is reached and should only be used with

confidence up to the load maximum. When the local load maximtun is reached, a

localization occurs because the stress level decreases with strain after this point. Hence,

the local load maximum dictates the ultimate strength and is given by the condition
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= 0 (3.15a)
c_ j

because of the linearity of Equation 3.14. Applying Equation 3.15a in Equation 3.13

gives

+ 1 o
-0 (3.15b)

A numerical evaluation of this expression shows that m must be greater than 2.7 for

the model to have a load maximum. A straightforward linearization of Equations 3.15b

and 3.13 gives the ultimate strength as

2 -]g_m+l (3.16)

which is exactly the same result as derived by Curtin [1993]. A more accurate result

can be obtained by seeking the solution for the load maximum in the following form

(3.17)
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where 13has to be determined.InsertingEquation3.17

collectingtermsof differentorderin l/m gives

into Equation 3.15b and

0=(2_13)+13(13 -2) 132(I3-3 ) 133(13-4)
m 2m _ t- 2m 3 ..... (3.18)

By choosing 13equal to 2, the condition for the load maximum is satisfied by the two

leading terms of the series expansion and is also asymptotically correct for large values

of m. Use of this result in Equation 3.13 gives the following expression for the load

maximum

(3.19)

The strength predictions for this model are compared with the numerical solution by

Neumeister [1993] in Figure 3.4. This model also compares favorably with the detailed

numerical simulation of the expressions given by Curtin, [1993] and Phoenix [19931

and can be used with confidence in the subsequent strength models.

One aspect that has been overlooked in the discussions of composite strength is

the strain at which the load maximum occurs. The composite average swain is related

to the fiber stress far away from the break by Equation 3.14. The average strain at the

load maximum can thus be determined by using this relation and inserting the fiber

stress at the load maximum in Equation 3.14, to give
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Figure 3.4. Normalized strength predictions for the current model compared with

other numerical simulations.
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(3.20)

The strain at the load maximum is shown in normalized form in Figure 3.5

together with the numerical simulations by Neumeister [1993] and the other models. It

can be concluded that all the closed-form solutions underestimate the strain at the load

maximum. Of these examples, the present model has the lowest discrepancy. The lower

strain prediction occurs because the possibility of an overlap of the slip regions has

been ignored in this model.

The model given by Equation 3.14 is equivalent to the assumption that the load-

carrying capacity of the composite is given by a fiber bundle of length 21R which has a

frictional sliding contribution from the pullout of the broken fibers with an effective

sliding length of 1R/2.

This type of fiber-fragmentation model should be viewed as an indicator of the

maximum achievable, longitudinal strength and strain at the load maximum of a

composite. Many different failure events can occur before this strength is reached.

Some of these failures will be discussed in subsequent paragraphs.
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Figure 3.5. Normalized strain at the load maximum compared with other numerical

simulations.
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3.2 Failure by a Mode I Crack

A global failure of a composite occurs when a macroscopic defect is formed.

This defect can be characterized as one of a number of different global failure types

which can occur in a composite before the perfect fragmentation strength is reached.

For some composites, experiments indicate that the fracture planes are perpendicular to

the fibers and the loading direction. This suggests that the macroscopic failure for the

present composite is given by the formation of a mode I crack [Bish, Jansson and

Kedward, 1996]. It will be assumed that the critical crack is formed when a

sufficiently large local fiber bundle has reached its load maximum. The crack opening

is then exerted on by the fiber portion of the composite stress and the matrix still

bridges the crack because of its higher ductility. The diameter of the fiber bundle that

fails has to be sufficiently large in order to be able to drive the growth of defects. For

linear elastic fracture mechanics, the radius of the bundle is related to the toughness as

(3.21)

where it has been assumed that the broken fibers cause an opening of the crack while

the matrix still bridges the crack. It is further assumed that only fiber breaks within one

transfer length, Ir, from the crack face affect the opening mode of the crack. This

implies that the volume of the critical defect, or the local fiber bundle is
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v_ = 2lRrta 2 - 2=f4 o._
(3.22a,b)

The total length of fibers in this volume is given by the relation

7td 2

Iv 4 - f2naZln (3.23)

The average number of fiber breaks in one bundle can the be determined by use of

L = ls/and Equations 3.11 and 3.23 in Equation 3.10 gives

(3.24)

and the number of breaks at the load maximum is

I

-..,r,,,,,n= d t,410oo'c) L
(3.25)

Because of the statistical nature of the fiber breaks, the breaks will cluster in some

regions. This is a well-known phenomenon in statistics and the probability of finding

breaks inside v_, when the average numbers of breaks in vh is n, is given by a Poisson

distribution as
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n tw

p(n = _) = e-" -- (3.26)

The fiber bundle is at the load maximum when this value is reached. However, it will

also have reached the load maximum if more breaks have occurred. This condition is

given by the cumulative Poisson distribution as

y(_,n)
p(s > _) = (3.27)

r(_)

where y is the incomplete and F is the complete gamma function. Hence, the

probability that a fiber bundle has reached the load maximum and a critical defect is

formed, is given by this expression. This can occur at any location in the composite

and the survival probability of the composite can then be determined by using a

weakest-link approximation for the composite as

p =i-i(l_p_)=exp(_!y(K,n)dV)F(_.) _':' (3.28a, b)

where n is given by Equation 3.24, _ by Equation 3.25 and vb by Equation 3.22. The

result, Equation 3.28b is based on the assumption that p_ << , which is usually the

case.
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This strengthmodel was used by crack [Bish, Jansson and Kedward, 1996] to

model the strength for a unidirectional MMC composite. It was found that traditional

Weibull statistics could not predict the strength for different specimen volumes and

loading modes. As can be seen in Table 3.1, this model predicts with a high level of

accuracy observed differences in strength.

Table 3.1. Experimental and Theoretical Strength Factors for SCS6/Ti 15-3

Type

Short Tension

Long Tension

Experimental

Strength
Factor

1
i

0.97

Theoretical

Strength
Factor

Linear Stress

Distribution

0.95

Non Linear

Stress

Distribution

0.96

4-Pt Bending 1.28 1.19 1.22

Long 3-Pt Bending 1.37 1.45 1.39

Short 3-Pt Bending 1.40 1.68 1.5

3.3 Failure by Bundle Pullout

Some systems have a weak, brittle matrix and the global failure is caused by

uninhibited shear crack propagation in the longitudinal direction [Neumeister et al,

1996]. This type of cracking will allow weak regions at different locations in the

composite to link up, forming a global failure. Hence, the strength is given by the

formation of a mode ITcrack that in turn is caused by a bundle pullout mechanism. The

failure is anticipated when an element, as shown in Figure 3.6, with diameter Da and

length LR, fails. It is assumed that local interaction in the longitudinal direction is

limited to one stress recovery length, LR. The diameter, Ds, of the smallest bundle
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element that can be pulled out is given by a balance of the interlaminar shear strength

Tc and interfacial sliding stress "_as

r_DnLRx_ = nB_dLnx , (3.29)

The use of this definition of the fiber volume fraction and Equation 3.6 give the

element volume as

nd3 (3.30)
3V_ 16f2xi

The number of breaks in the fiber bundle can be determined by use of Equations 3.10

and 3.11 as

1 x c 1-ex
n = 2/\x,./ 21oo'o'_,

(3.31)

and the number of breaks at the load maximum is given by

(3.32)
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Failure is predicted when a critical fiber break density is reached within the element.

An element becomes unstable when use of weakest-link statistics, as previously

described, gives the survival probability as

(r3'(_,n) ,_

P, = exp[ - J- F--_
(3.33)

Use of this model for the data for the Nicalon/LAS composite [Jansson and Leckie,

1994] is shown in Table 3.2. It can be deduced that this model predicts the strength

ratios accurately for the different loading modes. Traditional Weibull statistics could

not predict these differences.

Table 3.2. Experimental and Theoretical Strength Factors for Nicalon/LAS

Experimental Theoretical

Type Strength Factor Strength Factor

Tension 1 1

4-Pt Bending 1.33 1.25

3-Pt Bending Rectangular 1.49 1.33

3-PtBending Triangular 1.51 1.52

3.4 Local Load-Sharing Model

An improved analysis given for the local load-sharing model used by Zweben

and Rosen [1970] is presented in this section. In this model, it is assumed that a critical

defect is formed and failure of the composite occurs when a secondary break occurs in
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a neighboringfiber to a previouslybrokenfiber. The secondarybreak hasto occur

within onestressrecoverylengthfrom theinitially brokenfiber. Theinitial fiber break

causesa stressconcentration,depictedin Figure3.7, over a length21Rin the next

neighboringfibers.Theprobabilitythat thesegmentof length21_of anadjacentfiber

survivesto thestresslevelof experiencedbeforethefiberbreakis

.0 ex(
/o k6o J )

(3.34)

and the probability that it survives the stress concentration caused by the fiber break is

/
p I= -k,-',\ 6o }

(3.35)

where k is the highest stress concentration in the adjacent fibers and

1

k n,.¢.l
ot - (3.36)

for the present stress distribution as illustrated in Figure 3.7. For a constant stress

distribution over the segment andct = 1, the probability that an adjacent fiber survives
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to the stress level experienced before the initial break or breaks because of the stress

concentration caused by the initial break is given by the conditional probability

 -p7
P] - (3.37)

1_/,/°

where pA = 1 - p A. The probability that all the 13neighboring fibers survive isf

O_p )o (p,'l= e?) (3.38)

The composite has n initial breaks that are given by Equation 3.10. Using a weakest-

link assumption for the strength the survivor, probability for the composite is

P, -- (P_)" (3.39)

Use of Equations 3.10 and 3.28b gives

4f v
P, = ex - [ctk" - 1 1- ex

rc 1odz

where v is the total volume of the composite. If

(3.40)
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then

(3.41)

For a globally varying stress distribution, the survival probability has to be integrated

over the volume of the composite giving the relation

P,=ex - [_km - 1]
' ,0" o T

(3.42)

This equation indicates that the Weibull modulus for the composite is 2m+ 1.
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3.5 Failure by Clustering of Two Breaks

The critical defect in the local load-sharing model is given by two fiber breaks

in adjacent fibers within two stress recovery lengths LR. This failure can also be caused

by clustering of two breaks. The probability of clustering of two breaks in adjacent

fibers is given by Equation 3.28b by using

= 2 (3.43)

and

L = 41R (3.44)

The critical volume element is given by

rcdZ 1 rtd3crf

v° =2"2lR 4 f- 4fT (3.45)

to give

_
p, = ex _ 1"(2)

(3.46)
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A comparison between this model with global load sharing and other models

which utilize the concept of local load sharing is shown in Figure 3.8. In the local-load

sharing model, the redistribution of stress from a broken fiber is transferred only to the

neighboring fibers. Thus, the stress concentration due to the failure of a fiber is

confined to a localized area. An upper bound on the stress concentration is given by the

assumption that the load from the broken fiber is carried only by the surrounding

fibers, k is equal to 7/6. In reality, the load from the broken fiber is distributed over

more fibers and the stress concentration is lower. A sliding fiber-matrix interface and

matrix plasticity also reduce the stress concentration. A realistic number is k = 1.07. It

can be deduced from Figure 3.8 that it is more likely that a composite will fail from

clustering of two breaks than from the local stress concentration caused by a fiber

break on the adjacent fibers.
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4.0 STRESS REDISTRIBUTION IN COMPONENTS

Many components will be exposed to load and temperature variations for an

extended time. The temperature and loading could be such that the stresses in the

weaker and often softer phase of the composite, the matrix, relaxes. Some systems

have a weak bond between fiber and matrix and this relaxation can dramatically change

the matrix-dominated properties. Environmental effects, such a moisture, can also

affect the bond between matrix and fiber in some systems. Here, some results are

presented for an investigation on an MMC system for which the residual clamping

pressure between fiber and matrix has been relaxed by subjecting the composite to a

thermo-mechanical loading history.

4.1 Observed Mechanical Behavior.

4.1.1 Transverse Tension. The transverse tensile response is shown in Figure

4.1 for the pristine (_=0) and debonded composite (c_=0.5) together with

numerical simulations. It was found by Gunawardena et ai., [1993] that the response of

the pristine composite was modeled well by including the residual stresses from a

fabrication temperature of 900oc and an interface that can only transfer compressive

normal stresses and has a friction coefficient of la = 0.8. It is interesting to note that

the initial linear response for the composite is slightly more compliant than that for a
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compositewith a fully bondedinterface.After the initial linear response, a substantial

decrease occurs in the slope of the stress-strain curve and this is caused by debonding

at the fiber matrix interface. The computations also indicate that some localized

yielding occurs in the matrix at the initial portion of the debond. Finally, the interface

is fully debonded in the loading direction and the load-carrying capacity is dictated by

the matrix ligaments between the fibers. A simple estimate for the transverse limit

strength [Jansson et al, 1991] gives

2

<_rL- j_ A_._,.. (4.1)

where Afro is the matrix area fraction at the weakest plane and el,, is the limit strength

of the matrix. The strain to failure is approximately 40% of the matrix failure strain of

3.2%. This reduction in failure strain is caused by a concentration of strain in the

matrix ligaments between the fibers because they are subjected to a higher stress.

The response for the debonded composite, e_ =0.5, has a much more

compliant initial linear response compared to the pristine composite. The modulus is

only a third of the modulus for the pristine composite and is of the same magnitude as

was observed for the same composite after cyclic thermo-mechanical load [Jansson et

al., 1994]. It can be deduced that this response is modeled closely by assuming an

initially stress-free interface, AT=0. The calculated response after debond is insensitive

to the value of the coefficient of friction at the interface and quite insensitive to the

constraint in the longitudinal direction. The response for the case where the fiber and
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matrix have the same longitudinal strain is only slightly stiffer than the response for the

case where the matrix is assumed to be fully decoupled from the fiber in the

longitudinal direction, c _' _ c f.

The failure strain in the tensile test for the debonded composite is 0.6%. The

specimen had previously accumulated a creep strain of 0.5%, giving a total strain of

1.1%. This total failure strain is very close to the observed failure strain for the

pristine composite, indicating that a constant strain criteria could be used as a failure

condition for this type of loading.

4.1.2 In Plane Shear. Shear tests have been performed with the fibers

orientated in the direction of the two notches as shown in Figure 4.2. It was shown by

Jansson et al. [1994] that the limit strength is dependent on the orientation of the fibers

for composites with weak interfaces in this type of test. The present loading subjects a

long portion along the fibers to constant conditions and is representative of loading that

occurs in practical applications. It has a lower limit strength than the case where the

fibers are oriented perpendicular to the notches. The experimental and computed stress-

strain curves are shown in Figure 4.2.

The response for the pristine composite has a initial linear response followed by

a gradual transition that reaches a limit condition with no increase in stress. A

comparison with the numerical simulations indicated that no sliding occurs initially at

the interface. This is followed by a response that corresponds to a sliding with a shear

stress of 185 MPa at the interface. The sliding stress thereafter gradually decreases
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with increase in strain to a saturation value of 115 MPa. A simple model for the limit

strength was proposed by Jansson et al., [19911:

l + aT_

t.- v_°L.,A_,, x,-_-*(l-A_,) (4.2)

where '_ is the sliding stress at the interface. This model predicts a sliding resistance

of 95 MPa at the interface for the limit state, which is close to the computed value of

115 MPa.

The debonded composite has a lower modulus and limit strength than the

pristine composite. The value of the initial modulus is approximately half of the value

for the pristine composite. This is higher than what is predicted for a stress free

interface with no sliding resistance, indicating that some contact is present at the

interface for this type of loading. The computations indicate that final limit strength

corresponds to a sliding resistance of 55 MPa at the interface, also approximately half

the value for the pristine composite. A modest reduction in failure strain that is close to

the sample to sample variation is observed.

4.2 Consequences in Design

4.2.1 Stress Redistribution. Titanium matrix composites can be used

efficiently in unidirectional lay-ups with the dominating loading in the fiber direction.

A MMC ring represents a candidate component that features this type of loading. It has
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the fibers oriented in the mosthighly stresseddirection, the hoop direction. For

simplicity,thering will beassumedto beof constantthicknessandonly loadingon the

outer radius as seenin Figure4.3 will be considered.The stressdistribution can

readilybe foundinLekhnitskii[1944]as:

I- "*LGJ -c"[7) (4.3a)

a

where C= _, k = _--_-, a is the inner radius, b is the outer radius and p
is the

equivalent blade loading on the outer surface. The hoop and radial stress distribution

are shown in Figure 4.4 for a ring with a/b = 0.5 and different anisotropy ratios k.

The case k = 1.2 corresponds to the elastic properties for the pristine composite and k

= 2.1 corresponds to the properties for the debonded composite. The pristine

composite has a very low anisotropy and the stress distribution is closely given by the

isotropic solution with the highest hoop stress at the inner radius. However, the loss of

residual stresses at the interface and the associated debond causes a substantial

reduction in the transverse modulus and an increase in the anisotropy of the composite.

This alteration causes a dramatic change in the hoop stress distribution and the hoop

stress attains its maximum value at the outer radius instead of at the inner radius.
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The value of the hoop stress at the inner and outer radius are shown in Figure

4.5 for different ring dimensions a/b. It can be deduced that a tremendous stress

distribution occurs when the interface debonds for small a/b ratios and the maximum

hoop stress can even increase. However, this can be avoided by choosing a larger a/b

ratio and it can be seen that the stress redistribution is modest for a/b larger than 0.7.

This result implies that this type of stress redistribution can sometimes be avoided by

choosing configurations such that the geometry dictates the stress distribution more

than the constitutive properties.

4.2,2 Stress Concentration, The highest tensile stress concentration for a hole

in a infinite plate illustrated in Figure 4.3b is given by the tensile hoop stress at the

ends of the diameter perpendicular to the loading direction, cf. Lekhnitskii [1944], as:

For a pristine composite loaded in the longitudinal direction, the stress

concentration is 3.4. After the residual stresses have relaxed at the interface, the stress

concentration increases to 4.6. For loading in the transverse direction, the stress

concentration for the pristine composite is 2.7 and it decreases to 2. I for the debonded

composite.
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4.2.3 Stress Decay. An interesting issue for composites is how far an edge

effect propagates into a component (Saint-Venant's Principle). Edge effects can

propagate much farther into highly anisotropic materials than into isotropic materials.

This observation was studied by Horgan et al., [1972] for the self-equilibrating loading

shown in Figure 4.3c. The approximate stress decay is given by:

_I < Ae-_,x > 0 (4.5a,b)

where

(4.5c)

Equation 4.5c indicates that the edge effect has the slowest decay rate in the stiffest

direction. For the present composite, the longitudinal modulus can be expected to he

unaffected by the debond. An appreciation for the difference in decay rate for the

debonded and pristine composite is given by the ratio of the lengths required to achieve

the same stress level. Use of equation 4.5c gives:

(4.6)
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This implies that the load diffusion length increases by 40 percent for the debonded

material.

It has been found that the relaxation of the residual compressive stresses at the

fiber-matrix interface causes a reduction in the transverse modulus to a third of the

value for the pristine composite.

The initial in-plane shear response is not affected as strongly as the transverse

tensile response. The shear modulus is reduced to half of the value for the pristine

material. Calculations indicate that the sliding resistance at the interface reduced by

half the value of the pristine material. The limit strength in shear is dictated by a

combination of the matrix strength and the sliding resistance at the interface. This

implies that the limit strength of the composite is only reduced by a factor of 2/3.

Some loadings, such as longitudinal tension, will tend to close the fiber matrix

interface and cause the debonded composite to have the same elastic properties as the

pristine composite. Other loadings, such as transverse tension, will cause portions of

the interface to open up more during loading. This will cause the debonded composite

to have elastic properties that are dependent on the loading. Some of the elastic

symmetry relations do not apply for constants determined from these different loadings.

It was demonstrated that micro-mechanical simulations can be used as an

efficient tool to evaluate the experimental observations. This experience also adds

confidence in the use of this approach in predicting composite behavior.

The present titanium materials composite (TMC) systems with weak interfaces

are candidates for components with complex shapes. The components will he

43



manufactured through complex processes and assemblies of sub-components. The

individual sub-components can therefore be subjected to a number to thermal cycles

with high temperature before service. This can lead to a relaxation of the compressive

stresses at the fiber matrix interface. The relaxation leads to a drastic reduction in the

transverse modulus. A reduction in transverse modulus causes an increase in the

anisotropy of the material, and the stress distribution in a component, consisting of a

debonded composite, can be substantially different from the stress distribution for the

pristine composite. Hence, design calculations should be performed for the pristine and

debonded composite properties to ensure that the component has the required

performance.
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5.0 CONCLUDINGREMARKS & RECOMMENDATIONS

The theoretical research described herein has provided a fundamental foundation

for future development and evaluation of aligned fibrous composites for potential

application to reinforcing elements for reinforced concrete structures. It has been

demonstrated that projecting the structural performance of components from small

specimen data to the representative structural level is both volume dependent and

configuration dependent. The models and the statistical, Weibull-type theory have been

developed to facilitate prediction of the effect of both volume and loading configuration

and basic strength properties. Although the research has concentrated to a large degree

on a MMC system, with limited discussion of PMC systems and results, the basic

mechanics and approaches can be readily extended to PMC systems with much more

flexible matrix elastic properties. In fact, we highly recommend that the methods

developed here should be further evaluated for realistic fiber and matrix constituents

such as E-glass fiber and vinylester matrices.

Emerging from this research is the prospect of translating the key Weibull

parameters for individual reinforcing filaments into equivalent Weibull parameters for

the unidirectional composite system. Similarly, evaluation of the influence of size

(volume) and loading configuration, i.e., tension versus flexure, are also amenable to

formal development and assessment. An appropriate blend of materials science and

structural mechanics disciplines will be necessary to enable significant scientific and

technological advancement of the general application of composites in civil engineering
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structural applications. In fact, one of the longer-term goals of our research was to

establish a closer interaction with structural engineering. Nevertheless, we strongly

recommend that further basic research, of an interdisciplinary nature, should be

considered in establishing the groundwork on the mechanisms and characteristics of

ductility potential in PMC's with relatively brittle reinforcing filaments. The linkage

with the implementation of composites as reinforcing elements as viewed by the

structural engineer and concrete technologist is, however, essential in helping to define

the role of both reinforcement stiffness, ductility and interface bond/slip between

reinforcing elements and concrete at the macro-level.

reinforced and prestressed concrete applications

Specific examples would include

and could, potentially, provide

valuable insight for applications-oriented development such as the Advanced Waterfront

Technology Test Site (AWTTS) at NFESC (Port Hueneme).

The parallel experimental research has provided insight into both the grip design

required to facilitate meaningful test data on candidate rebar tensile behavior as well as

an evaluation of the merits of considering development of hybrid rebar configurations.

In the former investigation, the local stress distribution in the grip region was

determined using finite element analysis and these results indicated the presence of a

stress/strain concentration just inside the grip termination location. It was also shown

that the layered structure of hybrid rebar tended to sigmficanfly modify the stress and

strain concentration and resulting distributions in the grip termination region, a factor

that potentially contributes to the strength data generated for the rebar specimens.
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One of the major difficulties in developing reliable and consistent test data for

both grip design and hybrid rebar evaluation the quality of the specimens available.

Thus, it is strongly recommended that an alternative source of supply should be

explored in ongoing research on grip and rebar experimental evaluations of the type

conducted in this research investigation.

Finally, there is a desperate need for a well planned, rigorous assessment of

long-term durability and environmental effects on current and future low-cost PMC

systems that are candidates for applications in civil engineering in general but, perhaps

even more importantly in waterfront or marine structures. Funded research in this area

appears quite limited in the United States at present, but environmental concerns

remain a major issue for economics/life cycle rationalization.

The UCSB research team is most grateful for the opportunity to conduct this

research investigation for NFESC and, despite the need to cut short the originally

planned period of research to 2 years, we feel we have gained much from the program

and contributed some methodology and data that will prove useful in future research.

The expansion of our involvement with the civil engineering community that was

fueled by this research involvement has included the NSF Offshore Technology

Research Center peer reviews, Federal Highways Advisory Committee on Adhesive-

Technology for civil structural applications and Institute of Mechanics and Materials

(UCSD) Think-Tank on Durability of Advanced Composites in Civil Structures.
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